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On the basis of the concrete operations definable on the set of effect operators 
on a Hilbert space, an abstract algebraic structure of sum Brouwer-Zadeh (SBZ)- 
algebra is introduced. This structure consists of a partial sum operation and two 
mappings which turn out to be Kleene and Brouwer unusual orthocom- 
plementations. The Foulis-Bennett effect algebra substructure induced by any 
SBZ-algebra, allows one to introduce the notions of unsharp "state" and 
"observable" in such a way that any "state-observable" composition is a standard 
probability measure (classical state). The Cattaneo-Nisticb BZ substructure 
induced by any SBZ-algebra permits one to distinguish, in an equational and 
simple way, the sharp elements from the really unsharp ones. The family of all 
sharp elements turns out to be a Foulis-Randall orthoalgebra. Any unsharp 
element can be "roughly" approximated by a pair of sharp elements representing 
the best sharp approximation from the bottom and from the top respectively, 
according to an abstract generalization introduced by Cattaneo of Pawlack "rough 
set" theory (a generalization of set theory, complementary to fuzzy set theory, 
which describes approximate knowledge with applications in computer sciences). 
In both the concrete examples of fuzzy sets and effect operators the "algebra" 
of rough elements shows a weak SBZ structure (weak effect algebra plus BZ 
standard poset) whose investigation is set as an interesting open problem. 

1. T H E  " A L G E B R A "  O F  U N S H A R P  Q U A N T U M  M E C H A N I C S  
ON H I L B E R T  SPACES:  M E T A T H E O R E T I C A L  
P R I N C I P L E S  

The "logic" of quantum simple proposit ions in convent ional  quan tum 

mechanics  (QM) based on a complex Hilbert space ~ is realized by the set 
~ ( ~ )  of  all subspaces (i.e., closed linear manifolds)  of  ~ .  The set A t (~ ) ,  

equipped with the set-theoretic inclusion C_ and the or thocomplementa t ion 
x assigning to any subspace M its annihilator M • is an or thocomplemented  
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orthomodular atomic complete lattice (the so-called "quantum logic"), 
bounded by the trivial subspaces {0} and ~f; the g.l.b, of any family {Mj} 
of subspaces is the set-theoretic intersection (i.e., ~ = AMj), the 1.u.b. of 
the same family is the subspace generated by the set-theoretic union (i.e., 
vMj - (UMj) 'I) .  All this can be summarized by the structure 

(At(~), A, V, • {0}, ~ )  (1.1a) 

The collection of all quantum events is realized by the set H(~)  of all 
orthogonal projections on ~ ,  which has a structure 

(II(~), <-, ', O, I) (l.lb) 

of an orthomodular orthocomplemented atomic complete lattice with respect 
to the phenomenological partial ordering defined for PI, P2 E II(~) by 

Pt <-- P2 iff Vq~ �9 ~ ,  (q~letq~) --< (q~lP2tp) (or) 

and the orthocomplementation on I I (~)  defined according to one of the 
equivalent forms 

P' := I - P = PR~n(p)• = Pze~e) (oc) 

[denoting by PM the orthogonal projection which projects onto the subspace 
M �9 ht(~)]. Vectors from ~0 := ~ \ {0.0} are interpreted as (pure)preparation 
procedures of individual samples of the physical entity under well defined 
and repeatable conditions. For any preparation ~p �9 ~0 and any event P e 
II(Xe) the quantity 

(,pte~) 
~(q~, P ) : =  i/q~ll 2 �9 [0, 1] (1.2) 

is the probability of the occurrence of the answer "yes" for the event P when 
the entity is prepared in q~. 

The one-to-one mapping At(~) ,-, H(~) ,  M ---> PM, associating with 
the subspace M of ~ the orthogonal projection PM which projects onto M, 
is an isomorphism in the category of orthomodular lattices. In axiomatic 
quantum mechanics, it is assumed that PM represents the event which measures 
the quantum simple proposition M. The certainly-yes domain of any event 
P �9 1-1(~) is defined as Dl(P) := {0 �9 ~0: Ix(0, P) = 1 }, i.e., the collection 
of all preparations in which the answer "yes" to the event P occurs with 
certainty (probability one); trivially, the subspace onto which P projects is 
ML(P) := Ker (1 - P) = Dr(P) LI {0}. 

Summarizing, the now outlined mathematical realization of sharp QM 
based on a Hilbert space is founded on the identification between "events" 
(mathematically realized by orthogonal projections) and "simple proposi- 
tions" (mathematically realized by subspaces): 
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J SIMPLE PROPOSITION J 
P "* MI(P) 

Unsharp QM is an enlargement of the above theory, in which effect 
operators (i.e., linear operators F on ~ such that V~p �9 ~ ,  0 <-- (~plF~) -- 
IJq~ll 2) represent the extension of orthogonal projections and orthopairs of 
subspaces [i.e., pairs of subspaces (M~, M0) of ~ which are mutually orthogo- 
nal: M~ _L /140] generalize the standard notion of subspace. 

Let us denote by %(~) the set of all effect operators; then %(~) strictly 
contains the set I I (~)  of all orthogonal projections. As usual, vectors from 
~0 := ~ \ {0} are interpreted as preparation procedures, and for any effect 
F e %(~) and any preparation q~ �9 ~o the quantity 

~(q~, F)  := IMI2 �9 [0, 11 (1.3) 

is the probability of the occurrence of the answer "yes" for the effect F when 
the entity is prepared according to qo. 

The set of all Hilbert space unsharp quantum propositions is the family 
Lf (~,_L) := {(M1, M0): Ml, M0 �9 At(~), Ml _L /140} of all orthopairs of 
simple propositions (=subspaces) of ~ .  For any effect F we introduce the 
two mutually orthogonal subspaces of ~ :  MI(F) = Ker(l - F)  [identified 
with the certainly-yes domain of F, DI(F) := {t~ �9 ~ :  p,(O, F) = 1 } = 
MI(F)\{Q})] and Mo(F) = Ker(F) [identified with the certainly-no domain 
of E Do(F) := {q~ �9 ~:  Ix(q~, F)  = 0} = M0(F)\{0}]. Vectors of the certainly- 
yes (resp., no) domain Dl(F) [resp., D0(F)], represent preparations with 
respect to which the answer "yes" (resp., "no") to the effect F (resp., F'  := 
1 - F) is certain, i.e., the probability of the occurrence of F (resp., F ')  is 
1. Therefore, we have the following unsharp extension of the above diagram: 

J PROPOSITION I 

F ---> (MI(F),Mo(F)) 

in which the identification between the orthomodular lattices of projectors 
and subspaces is broken up into a mapping from the family of effects onto 
the family of propositions, which is not one-to-one. 

Remark 1.1. In the exact case of an orthogonal projection P �9 II(~),  
the proposition (MI(P), Mo(P)) is equal to the proposition (MI(P), M,(P)I), 
which can be identified with the simple proposition MI(P). 

Several relations and operations can be introduced on the set of effect 
operators on a Hilbert space. We list those which can be considered as relevant: 
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(1) The binary relation ofpartial ordering, which is the natural extension 
of the (or): for Fl, F2 E %(~) 

F1 <-- F2 iff Vq~ e ~ ,  (q~lFlq~) <--- (q~lF2q~) (%-00 

The structure (%(~), --<, O, 1) is a poset which is not a lattice [for an indirect 
prove of this statement see Davies (1976) and for a direct one see Greechie 
and Gudder (n.d.)]. 

(2) The binary relation of orthogonality on effects is 

F 1 Z F 2  iff Fl+F2-----1 

Once we define the set (%(~) • %(~))1 := {(Fb /72) E %(~) • %(~): 
Fl Z F2}, we can introduce: 

(3) The binary operation of partial sum on effects ~ :  (%(~) • %(~))• 
%(~), defined as 

F I ~ ) F 2 : = F I  + F 2  iff (FI, F2) e ( % ( ~ ) x % ( ~ ) ) •  

(Note that this definition makes use of the previous structure of poset with 
orthogonality (%(~), -<, 3_ O, 1)). 

(4) The unary operation of Kleene orthocomplementation, which is the 
natural extension of the first equality in (oc): VF e %(~) 

F'  :-- 1 - F (K-oc) 

(5) The unary operation of Brouwer orthocomplementation, which is 
the extension of the second equality in (oc): VF e ~(~f) 

F -  := PKe~F) (B-oc) 

The above are the relations and operations which we shall consider in 
the sequel. They are not the unique one that can be introduced on %(~); for 
instance, we can also quote: 

(6) The "convex" product, which can be stated as the external operation 

�9 �9 [0,  1] • ~ ( ~ 0  '-" %(~), (k ,  F )  ---) k -  F 

associating with any number 0 --< h --< 1 and any effect F the new effect 
k �9 F e %(~). 

Let us note that owing to (2) and (6), %(~) turns out to be a convex set, 
with respect to the following operation: 

(2-6) The convex "combination" 

c : [0, 1] x ~ ( ~ )  • ~ ( ~ )  ~ ~ ( ~ ) ,  

(h, F, G) --) c(h, F, G) := kF + (1 - k)G 

[operation which can be extended to or-convex combination in a trivial way]. 
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(7) The "filtering" product, which can be stated as the internal operation 

(D : %(~) • %(~) ~ %(~), (F, G) ~ F (D G := G 1/2 o F o G 1/2 

Adopting the notation of  Davies (1976), for any effect F ~ %(~), the map 
Tr: ~-(~) ~ ~ ( ~ )  from the set of all trace-class operators into itself defined, 
Vp e ~ ( ~ ) ,  by T :p )  := F 1/2 o p o F 1/2 is a pure operation (linear, positive, 
absorbing, and pure transformation) describing a physical "filter." For every 
pure state (induced by the preparation ~ ~ ~0) P~, :=,  IO)(~bl/ll~ll 2 we have 
that tr[Tr(p~)] = (t~lFt~)/114112 = ~(~J, F), i.e., F is the effect realized by the 
pure operation TF ["The effect F determines the probability of transmission, 
but not the form of the transmitted state" (Davies, 1979)]. 

Of course, the composition of two pure operations Tr o Tc acts on trace- 
class operators in the following way: (TF ~ T6) (p) = F I/2 ~ G 1/2 ~ p ~ G t/2 
o F 1/2 and then 

tr[(TF ~ T~)(p~,)] = tr[G 1/2 o F o G 1/2 o p~,] 

= (~bl(G 1/2 o F o Gl/2)t~) 
11~112 = ~ ( ~ ,  G 1/2 o F o G 1/2) 

i.e., F (D G is the effect which realizes the pure operation T~- o To. 
In conclusion, (6) allows one to introduce the convex structure of effect 

algebras [which is not considered in the structures based on the (1)-(5)] and 
(7) expresses a realization by effects of the composition of particular pure 
filtering operations. In some sense, in any algebraic approach based on (1)-(5) 
[without considering (6) and (7)] something of the "physics" of effects is 
definitively lost. 

A number of algebraic structures have recently been proposed as an 
adequate abstraction of the effects of a Hilbert space [BZ-posets (Cattaneo 
and Nisticb, 1989), D-posets (Kopka and Chovanec, 1994), effect algebras 
(Foulis and Bennett, 1994), quantum MV algebras (Giuntini, 1995), where 
each of them mimics, as an abstract axiomatization, only a part of the above 
operations (1)-(7). The problem of the "adequate" algebraic structure to 
describe unsharpness in quantum theory can be discussed on the basis of some 
metatheoretical principles, stated outside the mathematics of the involved 
structure. We assume the following as a suitable minimal choice for a further 
discussion and, if the case, criticism: 

(MTO The abstract algebraic structure % describing unsharpness in QM 
must have as concrete mathematical model the family %(~) of effect operators 
of usual unsharp (generalized) QM based on a Hilbert space ~ .  

(MT2) Making use of the formal structure of %, it must be possible to 
introduce a class of mathematical objects interpreted as "observables" and a 
class of mathematical objects interpreted as "states". In the Hilbert space 
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model observables must correspond to usual POV measures and states to 
density operators (at least for Hilbert space whose dimension is greater 
than two). 

(MT3) In the mathematical structure of %, which describes a general 
situation of unsharpness, a subclass %, of elements, interpreted as "sharp" 
("exact," "crisp"), and distinguished from elements in %\%s, interpreted as 
strictly "unsharp" ("fuzzy"), must be singled out (preferably in an equational 
and simple way). 

In the Hilbert space model of effect operators this class must correspond 
to the family of orthogonal projections. 

(MT4) For any element a E % there must exist two sharp ones a , ,  
a* E %, which represent the "best" sharp approximation from the bottom 
and the "best" sharp approximation from the top of a. The pair (a.,  a*) is 
the "rough" approximation of a, which for a sharp element a ~ %, must 
coincide with the pair (a, a) [see Cattaneo (1996) for an introduction to rough 
set theory, and for its algebraic generalization]. 

A little comment about (MT3) [and its "consequence" (MT4)]: Unsharpness 
has some meaning only if compared with sharpness (and this is possible only 
if the structure permits one to distinguish sharp from unsharp elements); 
there is no unsharpness without sharpness. 

2. SUM BROUWER-ZADEH ALGEBRAS AS A PROPOSAL FOR 
EFFECT ALGEBRAS AND UNSHARP QUANTUM LOGICS 

The above metatheoretical principles suggest to consider as a sufficiently 
fruitful minimal algebraic abstraction of effect operators a structure of sum 
Brouwer-Zadeh (SBZ)-algebra 

(~, • ~ ,  '; -, 0, l) 

where: 
(i) _1_ is a binary relation on the set % containing at least two distinguished 

elements 0 and 1 (0 =~ 1) [in the sequel we denote by a • b the fact that 
the pair (a, b) E ~g • % belongs to the binary relation • and by (% • %)• 
_C % • % the collection of all such pairs] such that: 

(og-1) [Symmetry law] 

a / b  implies b _ k a  

(og-2) [Regularity law] 

a_l_a and b •  imply a . l_b  
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(og-3) [Zero-one law] 

1 3_a implies a = 0  

(ii) ~ :  (% • %)~ ~ % is a partial operation defined on pairs of mutually 
orthogonal elements from % such that the following hold: 

(sa-1) [Commutative law] If a _L b, then b _L a is a consequence of the 
symmetry property of 3_, and 

a ~ ) b = b ~ ) a  

(sa-2) [Associative law] If a 3_ b and (a E) b) 3_ c, then b 3_ c, a 3_ 
(b ~) c), and 

a ~ ( b ~ ) c ) = ( a ~ ) b ) ~ ) c  

(iii) ': % ~ % is a unary operation on % such that the following hold: 
(koc-l) [ K-Orthosupplementation law] 

a_La '  and a ~ ) a ' =  I 

(koc-2) [K-Uniqueness law] 

a 3- b and a ~) b = 1 imply b = a' 

(iv) -:  % ,-. % is a unary operation on % such that the following hold: 
(boo-l) [B-Symmetry law] 

3r : a ~ r = b -  implies 3s : b ~ s = a -  

(boo-2) [B-Orthogonality law] 

a _ L a -  

(boo-3) [B-Noncontradiction law] 

3 r : a - ~ ) r = c  and 3 s : a - - ~ ) s = c  imply c - -  1 

Example 2.1. The real unit interval is an SBZ-algebra ([0, 1], 3_, ~9, ', 
- ,  0, 1) with respect to (1) the orthogonality relation: let r, s, ~ [0, 1]; then 
r 3_ s iff r + s -< 1; (2) the partial sum operation: let r, s e [0, 1] be such 
that r 3_ s, then r El) s := r + s (+  denotes the standard sum operation of  
real numbers); (3) the K-orthocomplementation: Vr ~ [0, 1], r '  := 1 - r; 
(4) the B-orthocomplementation: Vr E [0, 1], r -  = 1 if r -  = 0 and r -  = 
0 i f r  :~ 0. 

Example 2.2. The unsharp (fuzzy) set theory on the reference space U is 
an SBZ-algebra ([0, 1] u, .1_, ~ ,  ', ~, 0, ! )  with respect to: (1) the orthogonality 
relation: let f, g e [0, l]U; t h e n f  3- g i f f f  + g -< 1 (where 1 associates with 
any x e U the number l(x) := 1 e [0, 1]); (2) the partial sum operation: let 
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f, g E [0, 1] u be such tha t f  2- g; then f ( 3  g := f + g; (3) the K-orthocomple- 
mentation: Vf  ~ [0, 1] U, t hen f '  = _1 - f , "  (4) the B-orthocomplementation: 
V f ~  [0, 1] u, then f -  = XAo~ [where A0(f) := {x E U:f(x) = 0}, and for 
any subset A C_ U, XA(X) = 1 if X E A and = 0 otherwise]. 

Example 2.3. The "classical logic" of a measurable space (K, ~(K)) .  
Let ~(K))  be a ~r-algebra on the nonempty set K; the structure (~(K),  2-, 
(3, ', - ,  0, 1) is an SBZ-algebra with respect to: (1) the orthogonality relation: 
let A 1, A 2 ~ ~(K);  then Al I A2 iff Al f~ A2 = i~; (2) the partial sum 
operation: let AI, A2 ~ ~(K)  be such that A1 _1_ A2; then Al (3 A2 :-- AI [-J 
A 2 (in this case we also write A1 t~ A2); (3) the K-orthocomplementation: 
VA e ~(K) ,  A' := K\A; (4) the B-orthocomplementation: ~'A ~ ~(K) ,  
A - : =  K\A = A'. 

Example 2.4. The unsharp quantum mechanics on the Hilbert space ~ is 
an SBZ-algebra (%(~), 2_, (3, ', - ,  O, 1} with respect to: (1) the orthogonality 
relation: let E G E %(~); then F I G iff F + G --- 1; (2) the partial sum 
operation: let F,, G ~ %(~)  be such that F 2- G; then F (3 G := F + G; 
(3) the K-orthocomplementation: ~'F e %(~), F' := 1 - F; (4) the B- 
orthocomplementation: VF E %(~), F -  := Pl~e~e). 

Example 2.5. The standard "quantum logic" of a Hilbert space ~ is an 
SBZ-algebra (dlL(~), 1 ,  (3, ', - ,  {0}, ~ )  with respect to: (1) the orthogonality 
relation: let Mr, M2 E At(~); then ml I M2 iff V*l ~ Ml and V~J2 ~ ME, 
(0tl~2) = 0; (2) the partial sum operation: let Mr, ME ~ At(~) be such that 
Mt _L M2, then Mi (3/142 := MI v M2 (i.e., the subspace generated by MI 
U M2); (3) the K-orthocomplementation: VM e At(~), M' := MX; (4) the 
B-orthocomplementation: ~/M E At(~), M -  := M • = M'. 

As a consequence of these examples we can state the following result. 

Conclusion 1. The structure of SBZ-algebra satisfies the metatheoretical 
principle (MTI) since the unsharp QM of effect operators on a Hilbert space 
is an SBZ-algebra (Example 2.4). 

Definition 2.I. Let % and ~ be two SBZ-algebras. A mapping ~b: % 
is a morphism iff the following hold: 

(i) ~b(l~) = 1~; 
(ii) let a, b ~ % be such that a • b; then ~b(a) .L ~b(b); 
(iii) let a, b E % be such that a 2- b; then ~b(a (3 b) = ~b(a) (3 qb(b); 
(iv) d~(a-) = ~b(a)-. 
A morphism is called epimorfism iff onto. 

Proposition 2.1. If % and ~; are SBZ-algebras and ~b: % ~ ~; is a 
morphism, then: 
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(i-a) 6(0~) = 0~. 
(iii-a) Let a, b ~ %; if 3s ~ % s.t. a 3_ s and a ~ s = b, then the 

element 6(s) ~ 9; is s.t. 6(s) • +(a) and 6(a) @ 6(s) = 6(b). 
(iii-b) 6(a ' )  = 6(a) ' .  

Definition 2.2. A mapping 6: % ~ 9; from the SBZ-algebra % into the 
SBZ-algebra 9; is apo-morphism iff the above properties (i), (ii) of Definition 
2.1, plus the following conditions hold: 

(iii-a) Let a, b ~ %; then 3s E ~: a _L s and a ~ s = b imply 3r  
9;: r • ~b(a) and d~(a) ~ r = 6(b) [in general r 4= ~b(s)]. 

(iii-b) ~b(a') = ~b(a)'. 
(iv) ~b(a-) = ~b(a)-. 

A po-epimorphism is a po-morphism which is onto. 

Any morphism is trivially a po-morphism (see Proposition 2.1). 

Definition 2.3. Let % and 9; be two SBZ-algebras. A mapping d~: % 
9; is an isomorphism iff it is an epimorpbism which satisfies further: 

(v) Let a, b ~ %; then 3r  E %: ~b(a) J_ r and d~(a) ~ r = ~b(b) implies 
3s ~ %: a 3 _ s a n d a l s  = b. 

Proposition 2.2. If d~: % ,-, 9; is an isomorphism, then ~b is a bijection 
and dp-l: 9; ~ % is an isomorphism. 

2.1. The Foulis--Bennett Effect Algebra as a Substructure of SBZ- 
Algebra: States and Observables 

Neglecting the unary mapping ~ in the above definition of SBZ-algebra, 
points (i)-(iii) define in an equivalent way a structure of a regular "effect" 
algebra, according to Foulis and Bennett (1994). 

Theorem 2.1. Let (%, 1 ,  ~ ,  ', - ,  0, 1) be an SBZ-algebra. Then the 
substructure ~%, ~ ,  0, 1), is a regular FB-effect algebra, i.e., a set % with 
two special elements 0, 1 and a binary operation ~ partially defined on % 
satisfying for all a,b,c, ~ % the following conditions: 

(sa-1) [Commutative law] If a ~ b is defined, then b ~ a is defined 
and a ~ b = b ~ a. 

(sa-2) [Associative law] If a ~ b is defined and (a ~ b) ~) c is defined, 
then b �9 c, a ~) (b ~) c) are defined, and a �9 (b ~ c) = (a ~ b) ~ c. 

(sa-3) [Orthosupplementation law] For every a ~ % there exists a unique 
a '  ~ % such that a ~) a '  is defined and a ~) a '  = 1. 

(sa-4) [Zero-One law] If 1 ~) a is defined, then a = 0. 
(re) [Regularity law] If a E) a and b ~ b are defined, then a ~ b is 

defined, too. 
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Definition 2.4. Let % be a regular FB-effect algebra. Let a, b e %; then 
we define: 

(i) The binary relation 

a _L b iff a ~ b is defined (og-%) 

and in this case we say that a is orthogonal to b. 
(ii) The binary relation 

a <- b iff 3c ~ % : a l c and a ~ c = b (or-%) 

and in this case we say that a is less than or equal to b. 

The proof of the following Theorem can be found in Foulis and Ben- 
nett (1994). 

Theorem 2.2. Let % be a regular FB-effect algebra; then the structure 
(%, ~ ,  ', 0, 1) is a Kleene poset, i.e., a poset with respect to the partial 
ordering -< defined by the (or - %), bounded by the minimum element 0 
and the maximum element 1, and equipped with a Kleene (unusual) orthocom- 
plementation ': % .-. % [which is the mapping defined by the (sa-3)] satisfying, 
for arbitrary a, b E %, the conditions 

(doc - 1) a = a". 
(doc - 2) a -< b implies b' -< a ' .  
(re) a <- a '  and b' -< b imply a -< b (regularity) 

Moreover, we have that 

a_l_b iff a < - b  ' 

Example 2.1. The real unit interval. In this case the partial ordering 
coincides with the natural ordering of real numbers. 

Example 2.2. The standard fuzzy set theory on the reference space U. 
The partial ordering induced by the SBZ structure is the pointwise ordering 
on functions: 

f<--g  iff Vx E U, f (x)  <-- g(x) 

Example 2.3. The tr-algebra ~(K)  of  a measurable space K. We have that 
in this case the partial ordering induced is the standard set-theoretic inclusion: 

A 1 ~ ~k 2 i f f  A 1 C A 2 

Example 2.4. The unsharp quantum mechanics on the Hilbert space ~ .  
The SBZ partial ordering is the phenomenological ordering: 



Unified Framework for the Algebra of Unsharp, QM 3095 

F --< G iff V4 E ~ ,  (41F4) --< (41G4) 

Example 2.5. The standard quantum logic of a Hilbert space ~.  The 
induced SBZ partial ordering is the set theoretical inclusion on subspaces 

M <--N iff M C N  

Definition 2.5. Let % and ~ be two Kleene posets. A mapping 4: % 
is a K-morphism iff the following bold: 

(i) cb(l~) = 1~; 
(ii) let a, b e ~; then a -< b implies dp(a) -< &(b); 
(iii) ~(a' )  = &(a)'. 

A K-epimorphism is any K-morphism which is onto. A K-isomorphism is a 
K-epimorphism which satisfies the further condition: 

(iv) Let a, b e %; then cb(a) -< d~(b) implies a <-- b. 

As an immediate consequence of Definition 2.2, we can state the follow- 
ing result. 

Proposition 2.3. Let % and ~ be two SBZ-algebras. If 4: % ~ ~ is a 
po-morphism, then it is a K-morphism. 

The notion of morphism in the category of FB effect algebras is straight- 
forwardly obtained once suppress the condition (iv) in Definition 2.1 of an 
SBZ-algebra morphism. Therefore, any SBZ-algebra morphism is a morphism 
of FB-effect algebras. Moreover, any morphism between FB-effect algebras 
is trivially a K-morphism, too. We now consider an example of an FB-effect 
algebra morphism which is not an SBZ-morphism. 

Example 2.6. Let F ~ %(~) be an effect operator on the Hilbert space 
~g; for any nonzero vector 4 E ~g0 let us define the real quantity 

(41F4) 
r  : -  114112 E [0, 1] 

In this way we have defined a mapping ~r: ~o '-" [0, 1], i.e., a fuzzy set in 
the universe ~o: d:r e [0, 1] x~ As a consequence the mapping 4: %(~g) 
[0, 1] ~0 assigning to any effect operator F E %(~) the fuzzy set in the 
universe ~o, ~b~" E [0, 1] ~~ is well defined and it is easy to prove that it is 
an FB-effect algebra morphism. Indeed, cbl = 1 since V 4 e ~o, ~1(4) = 1 
= 1_(4); moreover, from Fl / F2, i.e., 0 --< Fl + F2 --< 1, it follows that 

(41(FI + F2)4) (41(F~)4) + (41(F2)4) _< 1 
0 <  

[[,ll 2 [[4l[ 2 II411 ~ 

that is, tbrl • ~be2 and (~FI(DF2 = ~)Fl (~ ~)F2" 
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This morphism of FB-effect algebras is not an SBZ-algebra morphism 
since ~bv-- = ~bpu~, which is a real unsharp fuzzy set owing to the fact that 

at every "point" ~ E ~o\(Mo(F) U Mo(F) • it assumes values different from 
0 and 1; on the contrary, (dpr)- = Xa0(~r) is a crisp (sharp) set, characteristic 
functional of  the subset Ao(~bv) = M0(F)\{0} = Do(F) of the universe ~o  
(incidentally, the certainly-no domain of  the fuzzy set ~bp is just the certainly- 
no domain of the effect operator F). 

Definition 2.6. A regular FB-effect fir-algebra is a regular FB-effect 
algebra % such that the following holds: 

(tr) For any sequence {an}~N C_ % s.t. Vn ~ N, a~ <- an+l, there exists 
VnEN an ~ ~. 

Remark 2.1. All the examples presented in the preceding section satisfy 
condition (tr), and thus are examples of regular FB-effect tr-algebras. 

Let us notice that in the case of Example 2.4 (the unsharp QM), the 
existence of the l.u.b of any increasing sequence of effect operators is an 
immediate corollary of Proposition 1 of Berberian (1966). 

In particular we quote the following result, which will be used in the 
sequel. 

Lemma 1. In the SBZ-algebra [0, 1] i f  {an}n~N C [0, 1] is an increasing 
sequence (Vn ~ N, an <-- an.l), then Vn~N an = lim an. 

Definition 2.7. In a regular FB-effect w-algebra % we will say that 
{an}n~N C__ % is an increasing sequence convergent to a ~ %, written an ,~ 
a, iff Vn E N, an <- an+l and a = Vn~N an. 

The only structure of  FB-"effect" algebra furnishes, at the very least, a 
notion of "disjointness" or "orthogonality'" _L for elements of % and the idea 
of "sum" ~ for orthogonal elements. These are the right notions in order to 
introduce inside the FB-effect fir-algebra structure the notions of "'state" and 
"observable," according to the following definitions which are the abstract 
version of Definition 1 of Berberian (1966, p. 6) [and also mimics equivalent 
notions introduced in the context of D-poset structures in Kopka and Chova- 
nec (1994)]. 

Definition 2.8. Let % and ~ be two regular FB-effect tr-algebras. A 
mapping d~: % - ~ is a o'-morphism iff the following hold: 

(i) dp(l~) = 1~; 
(ii) let a, b ~ �9 be such that a _L b; then ~b(a) _L ~b(b) and ~b(a (9 b) 

= ~b(a) @ ~b(b); 
(iii) for any {an}n~N C_ % such that an ~ a it follows that dp(a,) 

~b(a); explicitly 



Unified Framework for the Algebra of Unsharp, QM 3097 

Vn e N, a n <-- a,+, implies d~(va,) = v~b(an)  

Definition 2.9. Let % be a regular FB-effect g-algebra. A (K, ~(K))-  
observable, where (K, ~(K))  is the measurable space consisting of the value- 
set K and the or-algebra ~(K)  of observable-subsets, is any or-morphism F: 
~(K)  ~ % from the regular FB-effect or-algebra ~ (K)  (see example 2.3) 
into %. Explicitly: 

(i) F(K)  = 1; 
(ii) Let At, A2 e ~3(K) be such that A1 f3 A 2 ~-~ 0 ;  then F(A1) .L F(A2) and 

F(A~ U A2) = F(A1) �9 F(A2) 

(iii) Let {A.} _C ~(K);  then Vn �9 N, A. _C An+ 1 implies F ( U A . )  
= vF(A.). 

Definition 2.10. Let % be a regular FB-effect or-algebra. A state is any 
morphism Ix: % '-' [0, 1] from % into the regular FB-effect or-algebra [0, 1] 
(see example 2.1). Explicitly: 

(i) Ix(l) = 1. 
(ii) Let al, a2 e % be such that al J- a2; then Ix(al �9 a2) = Ix(al) + 

Ix(a2) --< 1. 
(iii) Let {an} C_ %; then Vn e N, a.  --< a.+l implies ~(va . )  = lim Ix(a.). 

With a slight modification with respect to Theorem 1 of  Kopka and 
Chovanec (1994) we can state the following result about the "statistical 
algorithm" [Bub (1974) for the adopted terminology]. 

Proposition 2.4. Let % be a regular FB-effect or-algebra. Let Ix: % ,-, 
[0, 1] be a state and F: ~(K)  ~ % a (K, ~(K))-observable; then the composi- 
tion pictured by the diagram 

A E B(K) F �9 F(A) E s 

p(F(A)) e [0, I] 

Fig. 1. 

defines a mapping p: = (Ix o F): ~(K)  ~ [0, 1] which is a (standard) 
probability measure. 

Proof. Since (Ix o F)  is finite, nonnegative, additive, and continuous 
from below at every A e ~(K),  Theorem F of Halmos (1950, p. 39) implies 
that (Ix o F )  is a probability measure. �9 
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Proposition 2.5. In unsharp quantum mechanics on a Hilbert space of  
Example 2.4, a (K, ~(K))-observable F: ~(K)  ~ %(~)  is a (normalized) 
POV-measure; i.e., 

(pov-1) F(K) = 1; 
(pov-2) Let A1, A2 e ~(K)  be such that Al f~ A2 = O, then F(At O 

A2) = F(At)  + F(A2) <--- 1; 
(pov-3) V{A.} C ~(K),  (i :/: j), Ai fl Aj = fl implies 

n=l  n=l  

[where the series converges in the weak (also in the ultraweak and strong) 
operator topology]. 

Proof. (pov-1) and (pov-2) are nothing but (i) and (ii) of Definition 2.9, 
specified in the Hilbert space case of Example 2.4. 

Let {A.} C_ ~ (K)  be such that (i :~ j)  Aif') Aj = 0, and let us consider 
r r . the sequence A[ = A1, A~ = A l U A2, and Vn E N, A. = An O A.- l ,  then 

this is a monotone nondecreasing new sequence such that UA" = UA., 
and thus 

F(UA~) = F(UA~) = v F(A'.) (1) 

Moreover, since An' = A. U A~'-i with A. N A~,_ l = 0, applying (pov-2) for 
a finite number of  steps we get 

F(A~,) = F ( A 0  + --" + F(A.)  (2) 

{ F (A~)} is a monotone nondecreasing sequence of effect operators, and thus, 
by Proposition 1 of Berberian (1966, p. 6) we have that 3[vF(A' ) ]  such that 
Vr E ~, 

( , I [ v F ( A ' ) ] , )  = lim (OIF(A' ) , )  = (2) = lira (tbl ~ F(A,)O) 
i=1 

= (~i ~ F(A,),> 
i=I 

Applying (I) to this result, we obtain that VO e ~, 

(01 A. 4) = (,I F(A.),) �9 
1 n=l  

Proposition 2.6. In unsharp quantum mechanics on a Hilbert space of 
Example 2.4 the restriction of a state I~: %(~)  '-" [0, 1] (see Definition 2.10) 
to the orthomodular lattice of projectors I I ( ~ )  satisfies 
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(s-l) p~(1) = 1; 
(s-2) for any orthogonal sequence {Pn} C 1-I(~) of  projections [(i :/: j), 

implies Pi _L Pj] we have 

P n = Ix(Pn) 
n=l 

Proof. From (i) of Definition 2.10 we have that the (s-l) is true. Let 
now P1, Pz ~ I I (~)  be such that P~ + Pz ----- 1, then from Theorem 2 of 
Halmos (1951, p. 45) we have that Pi _1_ P2 [i.e., by Theorem 4 of p. 45, 
Pl ~ P2 = P2 ~ Pl = 0] and P I v  P2 = Pl + P2; therefore, from (ii) of 
Definition 2.10 we get P~(PI + Pz) = Ix(P1 v P2) = Iz,(P0 + Ix(Pz) <--- 1. 
The extension to a finite number is immediate (once we consider that 
[En=l Pi] I Pn§ as a consequence of Pn+l o [Y'7=I Pi] = [En=l Pi] o Pn+l = 
0) and gives 

P i l P j  implies p ~ ( ~ P i l = ~ ( P i ) < l  (1) 
\i=l / i=1 

Let {Pn} C__ I I (~)  be such that (i q: j), Pj _1_ /~, and let us construct the 
sequence/31 --- PI,/32 = Pl + Pz, and Vn E N, Pn = Pn +/3n- l ;  then Vn 
N, Pn -< Pn+~ and 

Pn = ~ Pi (2) 
i=l 

Let us now consider [always owing to Proposition 1 of  Berberian (1966, p. 
6) applied to the monotone nondecreasing sequence {/~ }] 

[v/5~] = lim/~n = (2) = ~ Pn = vPn (3) 
n=l 

[where the last equality follows from Theorem 1 of  Halmos (1951, p. 49) 
applied to the orthogonal sequence of projections {Pn}]. 

Therefore, 

p~ = (3) = ~ = (taking into account the Definition 2.10) 

= l i m  ix(/~n)= ( 2 ) =  lim ~(i~l P i )  = (1) 

= lim ~(P~) = ~ ~(P.)  �9 
i=l n=l 
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Conclusion 2. The structure of the SBZ-algebra satisfies the metatheore- 
tical principle (MT2), which requires that the algebra describing unsharpness 
permits us to introduce the notion of "oservable" (Definition 2.9) and the 
notion of "state" (Definition 2.10); these two notions are such that any 
composition of a state with an observable gives rise to a probability measure. 

Moreover, in the SBZ-algebra of Hilbert space unsharp QM, observables 
are usual (normalized) POV-measures and, using the Gleason Theorem, if 
the dimension of the Hilbert space is strictly greater than 2, states are in a 
one-to-one correspondence with density operators. 

2.2. Brouwer-Zadeh  Poset as a Substructure of  SBZ-Algebra: 
Distinction Between Sharp and Unsharp Elements 

We have now to face the problem of distinguishing inside our SBZ- 
algebraic structure, and in an equational way, sharp elements from unsharp 
ones. To this end we premise some results in which the second unary operation 
~ :  ~g ~ % of an SBZ-algebra is strongly involved. 

Lemma 2. Let % be an SBZ-algebra and let a, b e %; then; 
(i) a - - ~ a -  = 1 
(ii) a - ~  = a - '  
(iii) a -  s a '  
(iv) a ' -  -- a <-- a ~' 
(v) a --< b implies b -  <- a - .  [equivalently, 3r: a �9 r = b implies 3s: 

b - ~ s  = a ~ ]  
(vi) 3 r : b ~ r = a a n d 3 s : b ~ ) s  = a - i m p l y b =  0 
(vii) a ^ a -  = 0 
(viii) a .1_ a - -  implies a = 0 

Proof. (i) From property (boo-2) of the definition of SBZ-algebra, applied 
to the particular case of a - ,  we get that a -  _L a - - ,  and thus a -  ~9 a - ~  
exists in %. Now, since 

3r = a - - :  a - ~ ) r = a - ~ a - -  and 

3 s = a - :  a - - ~ s = a - G a - -  

by (boc-3) we conclude that a -  ~) a - -  = 1. 
(ii) From (i) and (koc-2) we immediately get that a - -  = ( a - ) ' .  
(iii) From (boc-2) we have that a _L a - ,  and then from (og-l) we obtain 

that a -  _L a, which, owing to (ii), Theorem 2.4 of Foulis and Bennet (1994) 
implies a -  --< a' .  

(iv) From (iii), written Vb, b -  <- b', and applying this inequality to the 
particular case b = a' ,  we get Va, a ' -  -< a. Now,,, from (iii) we have that 
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a -  --< a '  and so, by (iii) of  Theorem 2.4 and (ii) of  Lemma 2.3 of Foulis 
and Bennett (1994) we have that a = a" <- a - ' .  

(v) Let a --< b then by (ii) and (iv) we have that a -- b - - ,  i.e., 3r: a 
r = ( b - ) - ;  applying to this result (boc-1), we have that 3s: b -  ~ s = a ~, 
i.e., by Definition 2.4, b -  <-- a - .  

(vi) Let a, b, ~ % be such that 3r: b ~3 r = a and 3s: b -  G s = a - ;  

then by (v) we get that 3P: a -  �9 P = b -  and 3g: a - -  ~) g = b - ;  applying 
the (boc-3) to this result, we get that b -  = 1, from which it follows that 
b -< b - -  = b - '  = 0, concluding that b = 0. 

(vii) For any a E %, let b be a lower bound of {a, a -} ,  i.e., b -< 
{a, a -} ;  then 3r: b ~) r = a -  and 3s: b ~) s = a - ;  by (vi) we have that b = 
0, concluding that a ^ a -  = 0. 

(viii) a I a - -  implies a --< a - - '  = (ii) = a -  and thus a = a ^ a -  = 
(vii) = 0. �9 

Theorem 2.3. Let (%, _L, ~ ,  ', - ,  0, 1) be an SBZ-algebra; then the 
structure 

(~;, -<, ', - ,  o, 1) 

is a bounded [by the minimum element 0 and the maximum element 1] BZ- 
poset with respect to the partial ordering --- [defined by (or - %) of Definition 
2.4] and: 

(K-oc) The Kleene (unusual) orthocomplementation ': % ~ % [which 
is the mapping defined by (iii) of  SBZ-algebra] satisfying, for arbitrary a, 
b E %, the conditions: 

(doc-1) a = a" 

(doc-2) a < b implies b '  -< a '  
(re) a -< a '  and b '  <- b imply a <<- b (regularity) 

(B-oc) The Brouwer (unusual) orthocomplementation - :  % ,-. % [which 
is the mapping defined by the (iv) of  SBZ-algebra] satisfying, whatever be 
a, b ~ %, the following conditions: 

(woc-1) a --< a - -  
(woc-2) a <-- b implies b -  -< a 
(woc-3) a ^ a -  = 0 

The two orthocomplementations are linked by the following interconnection 
rule for every a ~ ]~: 

(in) a - '  = a - -  

Proof. This result is a consequence of Foulis and Bennett (1994) and 
the above Lemma 2. �9 

Remark 2.2. From the Kleene orthocomplementation one can induce the 
binary relation of K-orthogonality on %, 
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a •  b iffdef a --< b' 

From the Brouwer orthocomplementation one can induce the binary relation 
of B-orthogonality on %, 

a • b iffde f a --< b ~ 

Let us notice that, as a trivial consequence of the (ii) of Lemma 2, 

a •  b implies a .l-x b 

and thus if one introduce a notion of B-morphism similarly to the notion of 
K-morphism, substituting the only condition (iii) with the condition 

(iii-K) Let a, b ~ %; if a • b, then d~(a (3 b) = d~(a) (3 d~(b) 

then any B-morphism is also a K-morphism, and in some sense it suffices 
to study only K-morphisms in order to describe inside SBZ-algebras the 
standard notions of observable and state. 

In any BZ algebra % it is possible to distinguish the set %s of  sharp (or 
exact)  elements, i.e., the collection of those elements from ~ which are closed 
with respect to the Brouwerian orthocomplementation: 

~ s : =  { a  e ~ : a  = a - - }  

The elements which are not exact are called unsharp (or fuzzy). 

Lemma 3. Let % be an SBZ-algebra. 
(ix) Va e %,: if  ot t a ,  then a = 0 
(x) VoL ~ ~gs: or- = a - '  
(xi) Let a, b, ~ %; if one of a, b belongs to %s, and a • b, then a (3 

b is the minimal upper bound of a, b, i.e., 

V c ~ r  if a , b < - c < - a ( 3 b ,  then c = a ( 3 b  

Proof. (ix) ot = or- -  and ot • ot imply ot 1 a - -  and thus, for (viii) 
Lemma 2 we conclude that ot = 0. 

(x) ot = or- -  and (i) of Lemma 2 imply ot (3 or- = 1, and thus, for the 
unicity of  the orthosupplementation law (sa-3), we have that or- = or'. 

(xi) Let us suppose that a, b, <- c <- a (3 b. Then, 3d, e e % s.t. c = 
a (3 d, c = b (3 e and 3 f  E % s.t. a (3 b = c (3 f .  Thus ,  a (3 b = c (3 f = 
(a (3 d) (3 f = (b (3 e) (3 f. By the cancellation law, a = e (3 f and b = 
d ( 3 f .  Thus, f < a a n d f  < b. By hypothesis we have that a • b and then, 
by Theorem 2.2 a -< b'. Again, by hypothesis one of  a, b is in %s; let us 
suppose b e %s (the proof for a E %s is similar). It turns out that f <- b' = 
b - .  Thus ,  f < b ^ b ~ = 0. Therefore, a (3 b = c (3 f = c. �9 
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Remark 2.3. Part (x) is a particular result of the BZ poset theory, in 
which it is possible to show the following stronger result. 

Proposition 2.7. In any BZ-poset E the following statements are 
equivalent: 

(1) a -  = a'  
(2) a = a ' -  
(3) a - -  = a ' -  
(4) a = a - '  
(5) a = a - -  
Each of the above conditions implies the following two (mutually equiva- 

lent) conditions: 
(6a) a ^ a '  = 0  
(6b) a v a '  = 1 
For the proof see Cattaneo and Nisticb (1989) 

Theorem 2.4. Let % be an SBZ-algebra. 
(1) The set of sharp elements is nonempty, since 0, 1 (=  0') ~ %s. 
(2) %s is closed under O. 
(3) For every ot ~ %s, ~t' = ~ -  ~ ~gs. 
Moreover, the structure 

(~, ~, ',0, 1) 

is a regular orthoalgebra according to Foulis and Randall (198 l) i.e., a regular 
FB effect algebra in which the zero-one law (sa-4) is replaced by the stronger 

(sa-4s) [Consistency law] Let ot E %~, if ot @ a is defined, then ot = 0. 

Proof. Points (l)  and (3) are standard results o fBZ poset theory (Cattaneo 
and Nisticb, 1989). Let us prove point (2). Suppose a, b E %~. Then, according 
to (ii) Lemma 2, a = a - -  = a ' -  and b = b - -  = b ' - .  Now, a, b -< a 
b; therefore, a, b -< (a @ b) ' - .  Further, by (iv) Lemma 2, (a ~) b ) ' -  --< 
(a @ b). By (xi) of Lemma 3, (a ~) b ) ' -  = a @ b. Hence, taking into account 
(ii) of Lemma 2, (a @ b) e %~. �9 

The following theorem can be obtained as a consequence of both orthoal- 
gebra theory and of BZ poset theory. 

Theorem 2.5. Let % be an SBZ-algebra. Then the structure 

(%~, -<, ', 0, 1) 

is an orthoposet, sub-BZ poset of %, with respect to the restriction to %s of 
the partial ordering (or-%) of Definition 2.4 and the (standard) orthocomple- 
mentation mapping ot E %~ ~ or' = or- E %,. 
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Moreover, if the 1.u.b. v and the g.l.b. ^ of the pair of sharp elements 
~t, 13 E %~ exist in %, then the 1.u.b. Ve and the g.l.b. ^e of the same pair 
exist in %~, and 

e t v e l 3 = o t v l 3  and e t ^ e l 3 = e t ^ 1 3  

Proof. For the proof in the BZ context see Cattaneo and Nisticb 
(1989). �9 

Making use of the two unusual orthocomplementations, it is possible to 
define the weak  anti-intuitionistic orthocomplementation: 

a ~ % ~ a ~ : = a ' - '  ~ s  

which satisfies the following conditions: 
(aoc-1) a~  -< a; 
(aoc-2) a <- b implies b ~ <- a~; 
(aoc-3) a v a ~ = 1. 

Trivially, for every a e %, one has that a -  <-- a '  --< a~. Sharp elements can 
be equivalently characterized by the anti-intuitionistic negation, since it is 
easy to prove that Va  ~ %, a = a - -  iff a = a~. Hence, %s = {a E %: a 
= a~}. 

In the framework of any BZ-algebra structure it is possible to introduce 
two unary operators from % onto %s which can be considered as generalized 
algebraic versions of the "necessity" and the "possibility" connectives of 
modal logic: 

a ~ ~g ~ v(a) := a ' -  = a ~ ~ ~ (necessity) 

a ~ ~ ~ Ix(a) := a - '  = a - -  ~ %~ (possibility) 

In particular the following hold: 
(mod-1) The necessity of an element "implies" the element itself, which 

in it turn "implies" the corresponding possibility 

v(a) <-- a <-- Ix(a) 

[v(a) --< p.(a), " / f  necessarily a, then possibly a" is the modal principle D; 
moreover v(a) <- a, " i f  necessarily a, then a" is the modal principle T (see 
Chellas 1980)]. 

(rood-2) Necessity and possibility are both idempotent 

v(a)  = v(v(a))  and Ix(a) = I-~(Ix(a)) 

[which is a stronger version of modal principle 4: v(a) <-- v(v(a)),  " i f  necessar- 
ily a, then necessarily necessarily a"]. 
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(mod-3) Operators v and IX act on the exact elements of %s as the 
identity operators: 

V13 ~ ~ , ,  v(13) = Ix(13) = 13 

[the particular case of 13 = Ix(a) is a stronger version of the modal principle 
5: Ix(a) ----- v(p~(a)), " i f  possibly a, then necessarily poss ibly  a"]. 

(rood-4) Necessity and possibility are linked by the expected interconnec- 
tion rules between modal-like operators 

Ix(a) = v(a ' ) '  (possibil i ty  = not-necessity-not)  

v(a) = Ix(a')' (necessi ty=not-possibi l i ty-not)  

(mod-5) An interconnection rule involving intuitionistic-like orthocom- 
plementation and modal-like operators can be stated: 

v(a ~) = Ix(a)- 

[in general, Ix(a-) ~ v(a)~] 
(mod-6) necessity and possibility are both monotone 

a <- b implies v(a) <-- v(b) and ~(a)  <- ix(b) 

(mod-7) The modal principles of noncontradict ion and excluded-middle  
(Moisil 1941, 1941)hold: 

v(a) A v(a) '  = p~(a) A Ix(a)' = 0 and v(a) v v(a) '  = Ix(a) v Ix(a)' = 1 

which assume equivalently the weaker form 

a A v(a ' )  = a A ix(a)' = 0  and a v v(a) '  = a v ~ (a ' )  = 1 

(mod-8) The two unusual orthocomplementations, both the intuitionistic 
and the anti-intuitionistic, can be expressed by means of modalities according 
to the following: 

a b = v(a)'  = v(a)~ = v(a)~ (contingency) 

a -  = i~(a)' = ~ ( a ) -  = ix(a) ~ (impossibili ty) 

Example  2.7. In the real unit interval SBZ algebra [0, 1 ] the set of exact 
elements is the two-valued Boolean algebra {0, 1 }. 

Example  2.8. Let us consider the SBZ-algebra of all fuzzy sets on the 
reference space U introduced in Example 2.2, which is also a distributive 
BZ-lattice with respect to the unusual orthocomplementation mappings: 
Kleenef'(x) := (1 - f ) (x ) ,  Brouwerf-(x) := XAo(f)(X), and anti-intuitionistic 
f~(x) := XAI~f)c(X) [where A0(f) := {x e U: f ( x )  = 0} is the impossibili ty 
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domain off ,  Al( f )  := {x E U: f (x )  = 1 } the necessity domain of f ,  and so 
Al( f )  c = At( f )  := Ix E U " f (x )  =h 1 } the contingency domain o f f ] .  

The set of all "sharp" ("crisp") fuzzy sets ([0, 1]U)e = {f E [0, l ]U:f  = 
f - - }  is just the collection of all characteristic functionals on U: 

([0, 1]t~)e = {XA: A e ~(U)}  

For any fuzzy s e t f t h e  necessity is v ( f )  = XAI(y) and the possibility is 
I~(f) = Xap(f) [where Ap(f) := {x E U: f ( x )  ~ 0} is the possibility domain 
o f f ] .  

Example 2.9. In the case of the SBZ-algebra %(~) of all effect operators 
of unsharp QM on the Hilbert space ~ (see Example 2.4, Section 2) the BZ- 
substructure is based on the unusual orthocomplementation mappings: Kleene 
F'  = 1 - F, Brouwer F -  = PM0(e), and anti-intuitionistic F ~ = PMI(~3• 

Trivially the set of  all "sharp" effect operators %(~)e = {F E %(~): F 
= F - -  } is just the set I I (~ )  of all orthogonal projections: 

�9 ( ~ ) e  = l - l (~ )  

The necessity of an effect operator F is v(F)  = PMI(F) and the possibility 
of an effect operator F is p~(F) = P~o(V) z. 

2.3. Quantum and Classical SBZ-Algebras of Effects 

In Remark 2.2 we have seen that the two orthocomplementations of 
the BZ poset structure induced from any SBZ algebra % give rise to two 
orthogonality relations "• and _1_~. Now, a link between these two orthogonal- 
ities is given by the possibility according to the following result. 

Proposition 2.8. Let a, b E %. Then 

a •  iff ix(a) l K ~ ( b )  

Proof. a -I-B b iff a -- b - ;  which implies ix(b) = b - -  -< a -  = ( a - ' ) '  
= ix(a)', i.e., I~(a) -kr ix(b). 

Conversely, p,(a) _l_r ix(b) iff b - -  -< a - ,  which implies a -< a - -  --- 
b - - -  = b - i . e . , a  _LBb. �9 

Definition 2.11. A quantum SBF algebra is any SBZ algebra % satisfying 
the following B-coherence law: 

(q) For any triple a, b, c ~ % of pairwise B-orthogonal elements, written 
{a, b, c} -LB, there exists the sum a E) b ~ c e %. 

Remark 2.4. Let us stress that in the above B-coherence law what is 
involved is the B-orthogonality relation, differently from Foulis and Bennett 
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(1994) where one has to do with a coherence law involving the Kleene 
orthocomplementation. Indeed, the Foulis-Bennett coherence law can also 
be called a K- coherence law, since it can be expressed as: 

�9 For any triple a, b, c ~ % of pairwise K-orthogonal elements, written 
{a, b, c} -l-r, there exists the sum a ~ b ~ c ~ %. 

Let us recall Theorem 5.3 of Foulis and Bennett (1994): An FB-effect algebra 
is an orthomodular poset iff it satisfies the K-coherence law. Differently, if 
an SBZ alegbra satisfies the B-coherence law, then we cannot state that it is 
an orthomodular poset (see the example below of the SBZ algebra of effect 
operators on a Hilbert space). 

Proposition 2.9. Let % be a q-SBZ algebra. Then, the set %s of all sharp 
elements is an orthomodular poset. 

Proof. From the fact that on the orthoposet %s of all exact elements 
the Kleene and the Brouwer orthocomplementations collapse into a unique 
standard orthocomplementation, Vc~ ~ %~, et' = ~ - ,  we have that Vot, 13 
%,, o~ lI~ 13 iff a &B 13. Therefore, for any triple a ,  13, ~/ ~ %, ,condition 
{a, 13, ~/} -I-B is equivalent to {a, 13, ~} _1_~:, and owing to the q-axiom, this 
implies the existence of a ~ 13 �9 ~/which is an element of %~ by condition 
(2) of Theorem 2.4. Then, applying Theorem 5.3 of Foulis and Bennett (1994) 
to the orthoalgebra (which is an FB-effect algebra, too) %s we conclude 
the thesis. �9 

Proposition 2.10. The SBZ algebra %(~) of all effect operators on a 
Hilbert space ~ satisfies the B-coherence law. 

Proof. Let F, G, T be three effect operators which are pairwise B- 
orthogonal; this means that, according to Proposition 2.8, the three projectors 
PRan(F), PRan(G), PRan(/3 are pairwise orthogonal with respect to the standard 
orthocomplementation on II(~).  As a standard result on Hilbert space theory, 
we have that PRa,(~3 + PRanm3 + PR~n(r) is a projector, in particular PRa~(~ + 
PRan(G) + PRan(T) ~ I. Since for any effect operator F E %(~) the following 
inclusion holds, F < Pl~r we have that 0 < F + G + T < PRa,<F) + 
PRan(6") + PRan(T) ~ I, and so F + G + T = F ~ G ~ T ~ ~;(~). �9 

Remark 2.5. As recalled in Section 1, and consistently with the above 
result, it is well known that the set l I (~ )  of all projectors on a Hilbert space, 
as collection of all sharp elements of the SBZ algebra %(~) of all effect 
operators [(%(~))~ = II(~)],  is an orthomodular (atomic, complete) lattice. 

Definition 2.12. A classical (c) SBZ algebra is any q-SBZ algebra % 
satisfying the following B-compatibility law: 

(c) For any pair of elements a, b, ~ %, there exists al, bt, c E % such 
that a2 -1-8 C, at Z8 (a2 ~) c), with a = al ~) c and b = bl ~) c. 



3108 Cattaneo 

Making use of the same technique used in proving Proposition 2.9 and 
the results of Foulis et al. (1992) (or also Foulis and Bennett, 1994), the 
following is straightforward. 

Proposition 2.11. Let % be a c-SBZ algebra. Then, the set of %s, of all 
sharp elements is a Boolean algebra. 

Proposition 2.12. The SBZ algebra [0, 1] u of all fuzzy sets on the 
universe U is a c-SBZ. 

Proof Trivial consequence of the fact that two fuzzy sets f g are B- 
orthogonal iff their possibility domains (also supports) are disjoint. �9 

Remark 2.6. In the SBA algebra [0, 1] u of all fuzzy sets, as shown in 
Example 2.8, the set {0, 1} u of all characteristic functionais of subsets of 
U, as collection of all sharp (crisp) elements, is a Boolean algebra isomorphic 
to the power set 9~(U) of U. 

Example 2.10. The case of fuzzy sets on the universe U gives an example 
of the fact that B-coherence can be satisfied, whereas in general K-coherence 
is not true. 

Indeed, from the fact that 

f,  g E [0, 1] v, f / B g iff Ap(f) N Ap(g) = 0 

we trivially obtain that from any triple f ,  g, h ~ [0, 1] u of pairwise B- 
orthogonal elements the sum f + g + h is a fuzzy set. 

But for instance in the universe R the triple 

1 1 1 
f = ~ X[-1,1], g = X[--2,--1) -~ 2 X[-1,1], h = ~ X[-1,1] "]- X(1,2] 

consists of pairwise K-elements a n d f  + g + h = 1/2 X[-2,-1] + 3/2 Xt-l,l} 
1/2 • ~ [0, 1] R. 

Similar pathological examples can be found with respect to a K-version 
of the compatibility law applied to fuzzy sets which are not crisp. 

2.4. Modal-Like Operators and Rough Approximation Mapping in 
BZ Structures 

From any elements a ~ % the associated necessity v(a) and possibility 
Ix(a) can be considered respectively as: 

(1). the lower. (or inner) sharp approximation of a (approximation of a 
from the bottom by sharp elements), since one can prove that 

v(a) = v{13 E %e : 13 --< a} 

l)(a) ~ {~ E ~e : ~ ~ a} 
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(2) the upper (or outer) sharp approximation of a (approximation of a 
from the top by sharp elements), since can prove that 

Ix(a) = ^{~/ e ~e : a ----- ~/} 

Ix(a) ~ {~/ ~ %e : a <- ~/} 

a ----- b iff v(a) = v(b) is an equivalence relation on %. Any equivalence 
class modulo - is called aproperty, we shall denote by pr(a) the equivalence 
class generated by the element a E % and any element fi e pr(a) is said to 
be a representative of property pr(a). The following hold: 

(i) the necessity v(a) belongs to property pr(a) and is the unique exact 
representative of this property [hence, all the other elements from the same 
property are its fuzzy representatives]. 

(ii) v(a) minimizes the property pr(a): v(a) = ^pr(a). 
(iii) v(a) is the best "sharp" approximation from the bottom of every 

fuzzy representative ~ of property pr(a): V~ E pr(a), v(a) = v{$ e %e: 

Therefore, any property can be sharply identified with its unique 
exact representative: 

pr(a) ~ v(a) (property) "~ (necessity) 

a --0 b iff Ix(a) = Ix(b) i san  equivalence relation on %. The equivalence 
class generated by a e % is denoted by pro(a) and called noperty. Ix(a) is 
the unique exact representative of noperty pro(a), all other elements from 
pro(a) are fuzzy representatives. Therefore, pro(a) can be identified with its 
unique exact representative: 

pro(a) "~ Ix(a) (noperty) ~ (possibility) 

From another point of view, pro(a) can also be identified with the exact 
element Ix(a)', which, of course, does not belong to this class: 

pro(a) ~ Ix(a)' = a -  (noperty) ~ (impossibility) 

The rough approximation of any a ~ % by sharp elements is the "neces- 
sity-possibility" ordered pair 

r (a) := (v(a), Ix(a)) [with v(a) <- Ix(a)] 



3110 Cattaneo 

pictured by the following diagram: 

a E s  

Fig. 2. 

The above "necessity-possibility" pair can be identified with the "necessity- 
impossibility" orthopair 

raz(a) := (v(a), I~(a)') [with v(a) _L ~(a)'] 

pictured by the diagram: 

a E s  

p C") ,4.) 

("C"), 
Fig. 3. 

Example 2.11. Rough approximations in fuzzy set theory. 
Let us recall that the necessity of a fuzzy se t f i s  v(f) = Xagy) and the 

possibility is I~(f) = XAp0~; thUS, the impossibility is given by p,(f)' = f -  = 
Xa~t~. Hence, two fuzzy sets define a property iff they have the same certainly- 
yes domain; in this way, to every property of fuzzy sets we can associate 
the certainly-yes domain of any of its elements. This property is interpreted 
as: "the point belongs with certainty to the subset Al(f) of U" and thus any 
property is exactly represented by the charactersfic functional XAI(~- 

Similarly, two fuzzy sets define the same noperty iff they have the same 
certainly-no domain. To every noperty we can associate the unique subset 
A0(f) of U which represents the noperty: "the point does not belong with 
certainty to the set Ao(f)" and this noperty is exactly represented by the 
characteristic functional Xaotf). 
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The rough approximation of a fuzzy se t fby  sharp sets is the necessity- 
possibility pair, identified with the pair of ordered subsets of U: 

r(f)  = (XA,(y), XAn~) -- (At(f), An(f)) [with Am(f) C Ap(f)] 

From another point of view, one can also construct the rough approximation 
of a fuzzy set as the necessity-impossibility pair, identified with the pair of 
disjoint subsets of U: 

r B ~ )  = (XAI(f), XA0(f)) "~- (Am(f), A0(f)) [with Al0e) N A0(f) = 0] 

All this can be summarized by the following diagram: 

f E  [13,1] u 

J 
X A i ( I )  ~ ~ Al(f) -.... 

(Al(f),Ao(f)) 
Fig. 4. 

Example 2.12. Rough approximation in unsharp quantum mechanics. 
The necessity of an effect operator F is v(F) = P~tl(~3 and the possibility 

of an effect operator F is I~(F) = PM0(F)" and so the associated impossibility 
~(F)' = Puo~3- Therefore, two effects define a property iff they have the 
same certainly-yes subspace, collection of all preparations qJ in which the 
two effects occur with certainty (probability one). 

The possibility of an effect operator F is I~(F) = PMo~F)• thUS tWO 
effects belong to the same if they have a common certainly-no subspace, 
collection of all preparations in which the two effects does not occur with 
certainty (probability zero). 

The corresponding rough approximation of an effect operator F is the 
necessity-possibility pair, identified with the ordered pair of subspaces of ~ :  

r(F) = (PM,(~, P~to<t3• =-- (MI(F), Mo(F)') [with M](F) C_ Mo(F) • 

One can also give a necessity-impossibility rough approximation of the given 
effect, identified with the ortho pair of subspaces 

rsz(F) = (PM,(t3, Puo~t3) -~ (MI(F), Mo(F)) [with M~(F) l Mo(F)] 
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All this is summarized in the following diagram: 

r ~ E(Tt) 

(MI(F), Mo(F)) 
Fig. 5. 

As a conclusion we can claim that the abstract SBZ-algebraic structure 
introduced in this work, besides the metatheoretical principles (MTI) and 
(MT2) previously verified, satisfies also the remaining (MT3) and (MT4) princi- 
ples. Indeed, we can state the further following result: 

Conclusion 3. In an SBZ-algebra the set of all "sharp" elements is the 
equational class of all Brouwerian-closed elements: a ~ % such that a = 
a - -  (equivalently, anti-Brouwerian-closed elements: a ~ % such that a = a ~). 

In the unsharp quantum mechanics of effect operators in a Hilbert space 
the SBZ-"sharp" elements are the orthogonal projections. 

Conclusion 4. The BZ-substructure permits us to associate to any element 
a ~ % of an SBZ-algebra the rough approximation r(a) = (v(a), Ix(a)) by 
the necessity of a (the best "sharp" approximation of a from the bottom) and 
the possibility of a (the best "sharp" approximation of a from the top). 

In the Hilbert space case, the BZ-rough approximation of an effect 
operator F, as a "necessity-impossibility" pair, is identified with the ortho- 
pair of subspaces (MI(F), M0(F)) consisting of the certainly-yes domain 
[collection of all preparations in which the effect occurs with certainty (i.e., 
probability one)] and of the certainly-no domain [collection of all preparations 
in which the effect does not occur with certainty (i.e., probability zero)]. 

3. THE SBZ-LIKE ALGEBRA OF CLASSICAL AND QUANTUM 
UNSHARP PROPOSITIONAL LOGICS 

In Section 1 we set out four metatheoretical principles to which possible 
algebraic structures describing unsharpness in quantum physics must conform. 
In particular (MTI)-(MT3) require to have as concrete mathematical model 
effects operators of Hilbert spaces. On the other hand, we have seen that the 
identification in the category of orthomodular lattices between orthogonal 
projections and subspaces of a Hilbert space is broken up in the case of 
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effect operators. To be precise, we can only state the (surjective) "rough 
approximation" mapping from the family of all effects operators onto the 
family of all ordered pairs of subspaces; this mapping associates with any 
effect operator F e % (~)  the quantum "proposition" r(F) = (Mj (F), MoF• 
with MI(F C Mo(F) 1. It will be interesting to see if also the set of all quantum 
propositions can be equipped with a structure of SBZ-like algebra. 

Let us discuss now two interesting examples. 

Example 1: The Unsharp "Classical Logic" of a Measurable Space 
(K, ~(K)) 

Let us consider ~(K) • ~(K)) C = {(Al, Ap): Al, Ap ~ ~(K), Al C_ 
Ap}. Then this set can be equipped with an SBZ-like structure 

((~(K) • ~(K))c, _L, ~ ,  ', - ,  (0, 0), (K, K)) 

with respect to: 
(1) the orthogonality relation: let (AI, Ap), (Bl, Bp) ~ (~(K) • 

~(K))c_; then 

(A1, Ap) • (B~, Bp) iff A~ C_ (Bp) c and B 1 C (Ap) c 

[note that (Al, Ap) • (Al, Ap) iff Al = 0]. 
(2) the partial sum operation: let (A1, Ap), (B1, Bp) ~ (~(K) • ~(K))c, 

with (AI, Ap) • (Bl, Bp); then 

(A1, Ap) ~) (B1, Bp) := (AI U Bl, Ap t_J Bp) 

(3) The K-orthocomplementation: let (A1, At,) e (~(K) • ~(K))c; then 

(A1, At,)' := ((At,) ~, (A1) c) 

(4) The B-orthocomplementation: let (AI, Ap) e (~(K) X ~(K))c_; then 

(A1, Ap)- := ((Ap) c, (Ap) C) 

Example 2: The Unsharp "Quantum Logic" of a Hiibert Space 

Let us consider (At(~) • At(~))~ := {(M1, Mp): Ml, Mp E At(~), 
M1 C_ Mp}. Then this set can be equipped with an SBZ-like structure: 

((~(~) • ~t(~))c, • @, ', -, ({o}, {o}), (~, ~)) 

with respect to: 
(1) The orthogonality relation: let (Ml, Mp), (NI, N p) ~ (At(~) • 

At(~))~; then 

(M~, M,) • (N~, N,) iff M~ C (Np) -~ and N~ C (Alp) • 
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[(mi, Mp) • (m Imp) iff Mt is the trivial subspace {0}]. 
(2) The partial sum operation: let (MI, Mp), (NI, Np) ~ (At(~) • At(~))c_ 

be such that (MI, Mp) • (Nt, Np); then 

(M1, Mp) (~ (Nt, N n) := (Mi v NI, mp v Np) 

(3) The K-orthocomplementation: let (Ml, M e) ~ (dbt(~) • Jtt(~))c_; then 

(Ml, Mp)' := ((Me) • (M0 • 

(4) The B-orthocomplementation: let (Ml Mp) ~ (dt(~) • At(~))c_; then 

(M1, Me)- := ((Mp) • (Me) • 

The above algebraic structures are SBZ-like, since we can prove the 
following: 

Theorem 3.1 Let a, b be two elements of either (~(K) • ~(K))c_ or 
(At(~) • At(~))~. Then the following hold [where we set 0 := (13, ~ and 
1 := (K, K) in the classical case, and 0 := ({0}, {0}) and 1 := (~,  ~ )  in 
the quantum one]. 

(og-1) {Symmetry law} 

a •  implies b . l_a 

(og-2) {Regularity law} 

a_l_a and b i b  imply a •  

(og-3) {Zero-One law} 

1 _1_ a implies a = 0 

Moreover, the partial sum operation is such that: 
(sa-1) [Commutative law] If a _L b, then 

a ~ b = b ~ a  

(sa-2) [Associative law] If a • b and (a ~ b) • c, then b • c, a • 
(b (~ c), and 

a ~ ( b ~ c )  = ( a ~ b ) ~ c  

Furthermore, the K-orthocomplementation satisfies: 
(koc-lw) [Weak K-orthosupplementation law] 

a • a' and a = a" 

(koc-2) [K-Uniqueness law] 
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a 2 _ b  

Lastly, the B-orthocomplementation satisfies 
(boc-lw) [B-Weak symmetry law] 

3r: a ~ r = b - ~  implies 3s: 

(boc-2) [B-Orthogonality law] 

a Z a  ~ 

(boc-3) [B-Noncontradiction law] 

3r: a - ~ ) r = c  and 3s: a - - ~ ) s = c  

and a ~ ) b =  1 imply b = a '  

b - ( 3 s = a -  

imply c = 1 

Proof. We give a proof of the classical case only, where a = (A l, Ap), 
b = (Bl, Be). The quantum one is similar. 

(og-l) is trivial. Part (og-2) follows from A1 = f} _C (Be) c and Bi = 
0 C_ (Ai,y. Let now (U, U) .1_ (Al, Ap); then U C_ (Ap) ~ and A1 C_ U c imply 
AI = Ap = 13. The commutative and associative laws are trivially verified. 

From A1 C_ (A~) c and Bl C_ (B~) c we obtain (Al, Ap) 2- ((Ap) c, (A00; 
moreover, (Al, Ap)" = ((Ap) c, (At)0' = (Al, Ap), which is the (koc-lw). 

For the K-uniqueness law, we prove that (A1, Ap) 2_ (Bi, Be) and 
(Al, Ap) fi) (Bl, Be) = (U, U) imply necessarily that (At, Ap) = (At, At) and 
(Bt, B e) = ((At) c, (Al)O = (A1, At) c. 

Indeed, the hypothesis can be restated as At C (Be) c and Bt C_ (A) c, and 
Al t3 Bl = A e t.J B e = U. The first inclusion can be extended to At C_ (BeY 
C (B0 c, i.e., A~ tq B~ = 0, and taking into account the later identity A1 t.J 
Bl = U, we obtain that (A0 c = Bt; moreover, always the first inclusion 
implies B! C_ B e C (At) c, and thus we conclude that B! = B e = (A1) c. Owing 
to this result, condition (At, A,) 2_ (B1, B e) turns out to be (Al, Ap) 2_ (AO c, 
(At)0, which in particular implies that (At) ~ C (Ae) c, i.e., A e C_ At, from 
which At = A e follows. 

If  3(Rt, Rp):(A! Ae) ~ (Rt, R e) = (Bt, Be)--  = (Be, Be), then in particular 
Al C_ (Re) c, which implies 

R e C_ (AO c (1) 

On the other hand, A e t3 Rp = Bp implies 

R e C__ B e (2)  

Lastly, from Rl C_ (Ae) c C_ (AO c we get R1 tq A 1 = 0 ,  and taking into account 
that AI t_J Rt = Be; we obtain 

Rt = B e N (AI) c (3) 

In conclusion, Ra C R e = (1) = Rp fq (AlY C_ (2) C B e fq (A0 c = (3) = 
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R 1 ,  i.e., Rl = Rp. Under this result, the hypothesis assumes the form (A1, Ap) 
~) (Rl, Rl) = (Bp, Bp), where Al C_ (R0 c and R1 C_ (Ap) c, i.e., A1 N Rl = Ap 
r) Ra = 0; moreover, it must be Al U R1 = Ap 1.3 R l = Bp. From this result 
it follows that necessarily A~ -- Ap; and thus the hypothesis becomes (Al, 
Al) ~) (Rl, RO -- (Bp, Bp), with Rt C_ (A0 c (i.e., A1 fq Rl = 0) and A1 tA R1 
= Bp, which imply AI = ( R I )  c f ' )  Bp, i.e., 

(A0 c = RI f3 (Bp) c (4) 

From A1 U R1 = Bp it follows the Rt C Bp, i.e., (B,) c C_ (R1) c, and so 

((Bt,) c, (Bt,)O _1_ (R1, RI) (5) 

Making use of (4) and (5) we conclude that ((Bt,) c, (Bt,)O (3 (Rl, Rt) = 
((AI) c, (Al)C). 

(Al, Ap)- = ((Ap) c, (Ap)O and A1 C Ap = ((Ap)C) c and (Ap) ~ C (Al) ~ 
trivially imply (At, Ap) 3_ (Al, Ap)-. 

(At, Ap)- ~ (R~, Rp) = (Ct, Ct,) and (A~, Ap)--  ~) (SI, $2) ----- (CI, (72) 
mean ((At,y, (At,y) ~9 (Rt, Rp) = (C~, C2) and (Ap, Ap) ~) (St, $2). Therefore, 
C1 = (At,) ~ U R1 = Ap t.3 St, with Rt f3 (Ap) c = St fq At = 0; this implies 
At, = Rt and (Ap) ~ = $1 and thus Ct = At, LJ Sl = At, t.J (Ap) ~ = U. So it 
must be also that Cp = U, i.e., (Cl, Cp) = (U, U). 

Remark 3.1. From the above Theorem we get that the SBZ-like structure 
now introduced differs from the SBZ-algebra considered in Section 2 in the 
properties (koc-1) and (boc-2). As stated in (Foulis and Bennett (1994) (koc- 
1) implies (koc-2w), and thus the latter is a generalization of the former. 

In particular, let us notice that for instance in the classical case 

(A1, At,) ~ (A1, Ap)' = ((Ap \ Al)  c, U) 

which is equal to (U, U), iff At = At,. Pairs of  the kind (A, A) [i.e., At = 
At,] are just the ones for which (At, At,) = (A1, Ap)--  (i.e., the sharp elements). 

At a first glance, it seems that no relation may be stated between (boc- 
l) and (boc-lw); but this presently is an open problem, which can be an argu- 
ment for a forthcoming deep study about these new SBZ-like structures describ- 
ing unsharp algebras for both the classical and the quantum propositional logics. 
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